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SHORT COMMUNICATIONS

One-dimensional unsteady general solution for Wang bioheat
transfer equation with heat source
proportional to temperature’
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Abstract

An analytical general solution is derived for the non-Fourier Wang bioheat transfer model with special internal heat pro-

duction. It is valuable for finding the special solutions with specified conditions and for expanding the understanding of the non-Fourier

heat conduction phenomena in living tissues, for example, the controversial temperature fluctuation effects. This analytical solution can al-

so be used as the benchmark solution to check the numerical calculations and to develop various numerical computational approaches. Be-

cause there is an arbitrary function in the expression of internal heat production, this solution can actually be applied to many types of inter-

nal heat production distributions.
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Bioheat transfer models are the theoretical base-
ments for the quantitative analysis and calculation of
the heat transfer processes in living tissues. Since the
establishment of Pennes equation in 1948, many im-
proved models based on it have been developed by re-
searchers all over the world. The porous medium
model proposed by Wang et al. (
sentatives among them. It is more general since its

is one of the repre-

derivation has no relation with Darcy Law and its ap-
plication is not confined to Newtonian fluid. A steady
general solution was deduced by Wang et al. 2} An
unsteady analytical special solution was derived by Cai
et al. [*! In addition, an analytical special solution for
the non-Fourier Wang equation was reported by Cai
et al. in Ref.[4]. Based on the work of Ref.[4],
this paper presents an analytical general solution for
the non-Fourier Wang equation with special internal
heat production to further expand the understanding
of highly complex Bioheat transfer phenomena.

The one-dimensional form of the non-Fourier
Wang equation can be expressed as
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where § is temperature, ¢ is time and x is geometric
coordinate. In addition, A=pcr,B=pc, D=4k, F =
pscsv,r and G = p,c,v,, where p is the density of tis-
sue, ¢ the specific heat of tissue, 7 the heat relax-
ation time, k the thermal conductivity, p, the densi-
ty of blood, ¢, the specific heat of blood and v, is the
blood velocity. These coefficients are assumed to be
constant as in Ref. [4] to simplify the derivation pro-
cedures. Moreover, Q =g, + g,, where ¢, and g,
are the metabolic heat and heat production inside the
biotissue by the external factors, respectively.

The basic equation (1) is a second-order partial
differential equation with the dependent variable §.
Q is commonly a given function. To acquire the ana-
lytical solution of Eq. (1), the following simple rela-
tionship is assumed

Q=FE+ ({4, (2)
where C is an undetermined coefficient. Then the e-
quation (1) becomes
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According to the formal characteristic of equation
(1), and the authors’ experiences in solving heat
conduction partial differential equations[5'6], an ana-
lytical general solution with special internal heat pro-
duction can be obtained as follows:
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where ¢, and ¢, are arbitrary differentiable func-
tions. The correctness of this analytical solution can
be proven easily by substituting equations (4) and
(5) into equation (1) and so do the solutions below.
The solution (4) and (5) depicts the temperature dis-
tribution in biotissue medium for any boundary condi-
tions and initial conditions reflected by the non-Fouri-
er Wang equation with special internal heat produc-
tion.

It is noticeable that the solution includes various
possible forms of temperature fluctuation effects. For
example, it includes the superposition of numerous
sine heat waves with arbitrary amplitudes and arbi-
trary periodicities, as the special solution (6) and (5)
below demonstrated, in which K is an arbitrary con-
stant.
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This is a typical phenomenon of the non-Fourier
heat transfer effect, based on the hypothesis of heat
disturbance propagation speed being finite. We have
reported an analytical special solution with heat wave
effects for the Chen-Holmes equationm, which is an-
other typical perfusion heat transfer model. The rela-

tionship between thermal parameters pc = twyc, is re-
quired for the existence of that solution, where wj is
the blood perfusion rate, while the total internal heat
production is an arbitrary constant. We primarily dis-
cussed the physiological meaning of that solution and
its explicit criterion to consider the existence of non-
Fourier heat wave. The criterion was compared with
that proposed by Liu et al. (8] The similarity in
modality and difference in criterion between Wang e-
quation and Chen-Holmes equation in reflecting heat
wave effect may be meaningful. However, there are
still disputes about the prime reason causing tempera-
ture fluctuation effects in biotissue (one opinion being
that the response of blood perfusion rate is the main
reason). Therefore the temperature wave phenomena
depicted by the solution (6) and (5) are not further
discussed in this note. Nevertheless, it is necessary to
introduce the non-Fourier heat transfer law into the
original Wang equation, since the hypothesis of infi-
nite heat disturbance propagation speed is approxi-
mate and inadequate. This means the object equation
(1) of this note is reasonable.

Eq. (5), as a constraint equation, strictly deter-
mines the variation mode of internal heat production.
However, utilizing a simple source term balance
method™!, it can be deduced that
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is also a general solution of equation (1) with special
internal heat production, in which ¢;(z) is an arbi-
trary function of z. The difference of solution (4)
and (7) from the solution (4) and (5) is that the in-
ternal heat production Q has a larger function space,
and its variation mode can be different with 8 to some
extent.
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